Seminários de probabilidade – Segundo Semestre de 2025

Quando forem online, as palestras ocorrerão via Google Meet às segundas-feiras às 15h30, a menos de algumas exceções devidamente indicadas.

Quando forem presenciais, as palestras ocorrerão na sala C-116 às segundas-feiras às 15h30, a menos de algumas exceções devidamente indicadas.

Todas as palestras são em inglês.

Lista completa (palestras futuras podem sofrer alterações)

In this talk, we discuss how the notion of ancestry can be used to characterize the stationary distribution of the nonequilibrium Simple Exclusion Process.
Let $W$ be an $n \times n$ symmetric matrix with i.i.d. centered entries with variance one. The celebrated Wigner’s theorem states that the empirical law of eigenvalues of $W$ converges weakly to the semicircular law, which is supported on $[-2,2]$. In addition, Bai and Yin proved that the largest eigenvalue of $W$ converges to 2 almost surely. In this case, we say that there are no outliers. In this talk, we explore the universality and stability of the Bai-Yin result. If we sparsify $W$ according to a regular graph $G$, can we find conditions under which there are no outliers? This is a joint work with Dylan Altschuler, Konstantin Tikhomirov, and Pierre Youssef.

We discuss convergence results of renormalised processes and give a simplified approach to convergence of various models introduced by Toth.