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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

The Jewish Wars (by Flavius Josephus)

“Since we all are resolved to die, let us rely on fate to decide the order in which we
must kill each other : the first of us that fortune will designate shall fall under a stab

from the next one, and thus fate will successively mark the victims and the murderers,
exempting us from attempting on our lives with our own hands.”

- Flavious Josephus (c. AD 37 – C. 100)
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Josephus Elimination Rule

Figure – The media is extracted from the Youtube channel ”Numberphile” and its video
“The Josephus Problem - Numberphile".
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Rule for the Josephus’ elimination process (Euler, XVIII th century)

Rule of the Josephus problem :
N-players, N ≥ 1, enumerated from 1 to N, stand in a circle.

Player 1 holds a knife.

The player holding the knife eliminates his right neighbor and passes the
knife onto the next person still alive on his right.

Problem

Given N ≥ 1, determine the position aN ∈ [[1,N]] of the survivor in Josephus
game.
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The Alternative Randomized Version (V2)

Background

Background : deterministic variations and past
literature
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Deterministic Variations of the Josephus Problem

Rule for the Generalized Josephus Problem : elimination step m ∈ N
N players, enumerated from 1 to N, stand in a circle.
Player 1 holds a knife.
The player holding the knife eliminates the person standing on the
m-th position on his right and passes the knife at the player standing at
the m + 1-th position.

Figure – Illustration of the Josephus game with elimination step m = 2.Ioannis Tsokanos (joint with F. Adiceam, S. Robertson & V. Shirandami) Randomization in the Josephus Problem
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Combinatorial Algorithms and the problem of m-enumerations of ZN

The Problem of m-enumerations : Let

ZN = {1, 2, . . . ,N} be an ordered set.

Given m ∈ N, the m-permutation of ZN is the ordered set

Z (m)
N =

{
a(m)

N (1), . . . , a(m)
N (N)

}
,

where a(m)
N (i), 1 ≤ i ≤ N, is the index of the person eliminated at the i-th step

of the Josephus game with elimination step m.

Given 1 ≤ n ≤ N, which 1 ≤ i ≤ N does satisfy a(m)
N (i) = n ?

Given 1 ≤ i ≤ N, what is the value of a(m)
N (i)?
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Past Research on the Josephus Problem

The Past Research :

Determine the position a(m)
N (N) ∈ [[0,N − 1]] of the survival ;

* For m = 2 (L. Halbeisen & N. Hunberbülher) : close-formula based on a
constant α = 0.8111 . . . .

* For m ≥ 3 (A. Odlyzko & H. Wilf) : close-formula with an error of up to m
positions.

Build algorithms to compute the m-permutation Z (m)
N ;

* (L. Lloyd) : algorithm with running time O (N · log(m)).
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The Randomized Version (V1)

The Randomized Version (V1)
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

The Probabilistic Elimination Process

Rule for the probabilistic elimination process :
N players, enumerated from 0 to N − 1, standing on a unit circle with a
regular spacing between them and labeled anticlockwise.

The 0-th player holds first the knife.

The player holding the knife :
1. with probability p eliminates in the same direction as in the previous round

and passes the knife in the direction of stabbing.
2. with probability 1 − p eliminates in the opposite direction from the previous

round and passes the knife in the direction of stabbing.

Ioannis Tsokanos (joint with F. Adiceam, S. Robertson & V. Shirandami) Randomization in the Josephus Problem



Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

The Probabilistic Elimination Process : illustration

Figure – Illustration of the probabilistic elimination rule over two rounds. The crossed
circles indicate the eliminated persons and the dots with grey interior the person who is
to make the next move.
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

The Survival Probabilities and the Probability Measure

Define

gN(n, p) := the survival probability of the person labelled n ∈ [[0,N − 1]] .

Let

µ
(p)
N :=

N−1∑
n=0

gN(n, p) · δ n
N

be a probability measure on the torus T = R/Z, where δx denotes the
Dirac mass concentrated at the point x + Z ∈ R/Z.
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

The Problem : determining the limit of the probability distribution

Main Problem (Randomized Version 1)

Determine the limit distribution lim
N→+∞

µ
(p)
N of the survivors as the number N of

participants tends to infinity.

In other words, the problem amounts to asking what should be, in the limit,
the position on the circle which maximises the chances of survival.

Recall :

µN −→
N→+∞

µ ⇔ for every ϕ continuous
∫

ϕ · dµN −→
N→+∞

∫
ϕ · dµ.
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

The Heuristic Approach to the Problem

1 Expectation : the knife moves p · (1 − p)−1-times towards one direction
before moving p · (1 − p)−1-times to the opposite one.

2 The knife starts an unbiased oscillation around zero.
3 The players around Participant 0 are eliminated first. The players around

Participant N/2 are eliminated last.
4 The smaller p ∈ (0, 1) ↔ More changes of the direction ↔ More intense

oscillation.

Figure – The unbiased oscillation of the knife under the probabilistic elimination
process.
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Numerical Data : computer simulations

Figure – Computer simulations for a game with 2000 players and the values of p
varying in the interval (0, 1).
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

The Main Result

Theorem (F. Adiceam, S. Robertson, V. Shirandami & I. T.)

Assume that p ∈ (0, 1). Then, the sequence of measures
(
µ
(p)
N

)
N≥1

admits a

weak limit µ(p) supported in R/Z.

(1) General case (linear combination) : When p ∈ (0, 1), the limit
measure µ(p) is a convex combination of Dirac masses concentrated at
the origin and at the point 1/2 ; that is,

µ(p) = (1 − cp) · δ0 + cp · δ1/2, for some cp ∈ [0, 1] .

(2) Middle interval (specific position) : When p ∈ (1/3, 2/3), the limit
measure µ(p) is the Dirac mass concentrated at the point 1/2 ; that is,

µ(p) = δ1/2 ⇔ cp = 1.
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

The Main Result : unbiased case

Theorem (F. Adiceam, S. Robertson, V. Shirandami & I. T.)

(3) Unbiased case (Centeral Limit Theorem) : When p = 1/2, if (XN)N≥1
is a sequence of random variables drawn successively and
independently, each according to the probability measure µ

(1/2)
N , then

1
SL

·
L∑

N=1

(
XN − 1

2

)
→

L→+∞
N (0, 1),

with

SL =

√√√√ L∑
N=1

V (XN) and SL ≍
√

ln(L),

where V (XN) is the variance of the random variable XN .
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Proof of the Main Result : the analytic operator

ϕ ∈ C0 (T) ↔ ϕ ∈ C0
P ([0, 1]) : boundary condition ϕ(0) = ϕ(1).

The analytic operator :

J(p)
N : ϕ ∈ C0

P ([0, 1]) 7→ J(p)
N [ϕ] =

∫
R/Z

ϕ · dµ(p)
N

=
N∑

n=0

ϕ
( n

N

)
· gN(n, p)

Main Problem (Reformulated)

Estimate the limit

lim
N→+∞

J(p)
N [ϕ] for every ϕ ∈ C0

P ([0, 1]) .
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Proof of the Main Result : Weierstrass theorem

Odd around 1/2 Even around 1/2
ϕ(x) = −ϕ (1 − x) ϕ(x) = ϕ (1 − x)

1 Every function ϕ can be decomposed in odd and even parts :

ϕ = ϕO + ϕE ; ϕO(x) =
ϕ(x)− ϕ(1 − x)

2
and ϕE(x) =

ϕ(x) + ϕ(1 − x)
2

.

2 Weierstrass Approximation Theorem : every ϕ ∈ C0
P ([0, 1]) can be

approximated arbitrary well by polynomials.

3 The even functions can be decomposed as a linear combination of the
2k -movements ϕ2k : [0, 1] 7→ R, where

ϕ2k (x) =

(
x − 1

2

)2k

.
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Proof of the Main Result : the recursive relations

Proposition (Recursion Relations for the Probability of Survival)

Let N ≥ 3 and p ∈ (0, 1). Whenever N ≥ 4, the probability vector
(gN(n, p))0≤n≤N−1 meets the recurrence relation

gN(n, p) =


gN−1(−1, p), if n ≡ 0 (mod N)
(1 − p) · gN−1(−2, p), if n ≡ 1 (mod N)
p · gN−1(−2, p), if n ≡ −1 (mod N)
p · gN−1(n − 2, p) + (1 − p) · gN−1(N − n − 2, p), otherwise

,

with the base (g3(0, p), g3(1, p), g3(2, p)) = (0, 1 − p, p).
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Proof of the Main Result : the limiting behavior of the random process

The recursive relations can be used to show the following two lemmas.

Lemma (Odd Functions)

Let ϕO ∈ C0
P ([0, 1]) be an odd function with periodic boundary conditions.

Then, there exists a constant C (ϕO , p) > 0 depending only on ϕO and
p ∈ (0, 1) such that ∣∣∣J(p)

N [ϕO]
∣∣∣ ≤ C (ϕO , p)

N
.

Lemma (2k-moments)

Let 2k ∈ 2N be an even non-negative integer. Then, for every N ≥ 4, it holds
that

J(p)
N [ϕ2k ]− J(p)

N−1 [ϕ2k ] =
2k
N

· J(p)
N−1 [ϕ2k ] + Oϕ,p

(
1

N2

)
.

Furthermore, the sequence
(

J(p)
N [ϕ2k ]

)
N≥1

converges.
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Proof of the Main Result : weak convergence of the probability
measures

1 The linear operator

J(p) : ϕ 7→ lim
N→+∞

J(p)
N [ϕ] , ϕ ∈ C0

P ([0, 1])

is well-defined and positive (i.e. J(p) [ϕ] ≥ 0 whenever ϕ ≥ 0).

2 Riesz Representation Theorem : there exists a (probability) measure µ(p)

of finite mass such that

J(p) [ϕ] =

∫
R/Z

ϕ · dµ(p).

3 Therefore,
µ
(p)
N −→

N→+∞
µ(p).
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Proof of the Main Result : Cases 1 & 2

Case p ∈ (0, 1) : An analytic argument yields that

µ(p) = (1 − cp) · δ0 + cp · δ1/2, for some cp ∈ [0, 1].

Case p ∈ (1/3, 2/3) :
Exponential Upper Bound :

gN(n, p) ≪p
β|n|

γN
, for some β > 0 and γ > 1.

⇒ “no dependence on 0”, i.e.

µ(p) = δ1/2.
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Proof of the Main Result : unbiased case

Case p = 1/2 : To prove

1
SL

·
L∑

N=1

(
XN − 1

2

)
−→

L→+∞
N (0, 1)

it suffices to show that

1
SL

·
L∑

N=1

(XN − E (XN)) −→
L→+∞

N (0, 1) and
1
SL

·
L∑

N=1

(
E (xN)−

1
2

)
−→

L→+∞
0.
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Proof of the Main Result : Unbiased Case

Lyapunov Condition : If

lim
N→+∞

(
1

S3
L
·

L∑
N=1

E
(
|XN − E (XN)|3

))
= 0,

then
1
SL

·
L∑

N=1

(XN − E (XN)) −→
L→+∞

N (0, 1).

Slutsky Condition : If
∑+∞

N=1 (E (XN)− 1/2) < +∞ and SL −→
L→+∞

+∞,

then
1
SL

·
L∑

N=1

(
E (xN)−

1
2

)
−→

L→+∞
0.
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Proof of the Main Result : Unbiased Case

Strong Exponential Upper Bound :

gN

(
n,

1
2

)
≪p

α2·(1+ϵ)n

αN , for some α = α(ϵ, p) > 1.

⇒ Sharp estimations of the k -th moments.

⇒ Lyapunov and Slutsky conditions.
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Open Problems and Conjectures

In view of the main result, the previously mentioned heuristic combined with
the numerical data gathered from computer simulations indicate that :

Conjecture (Randomized Version 1)

1 For every p ∈ (0, 1/3] ∪ [2/3, 1), it holds that

µ
(p)
N −→

N→+∞
δ1/2.

2 For (at least) every p ∈ (0, 1/2], the rate of convergence can be given in
the form of a Central Limit Theorem.
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Randomization in the Josephus Problem : version 2

(Alternative) Rule for the probabilistic elimination process :
N players, enumerated from 0 to N − 1, standing on a unit circle with a
regular spacing between them and labeled anticlockwise.

The 0-th player holds first the knife.

The player holding the knife :
1. with probability p eliminates the player standing on his right and passes the

knife in the same direction.
2. with probability 1 − p eliminates the player standing on his left and passes

the knife in the same direction.
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

The (Alternative) Probabilistic Elimination Process : illustration

Figure – Illustration of the probabilistic process with the alternative elimination rule over
two rounds. The crossed circles indicate the eliminated persons and the dots with grey
interior the person who is to make the next move.
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The Randomized Version (V1)

The Alternative Randomized Version (V2)

The Survival Probabilities and the Probability Measure (Alternative
Version)

Define

fN(n, p) := the survival probability of the person labelled n ∈ [[0,N − 1]] .

Let

ν
(p)
N :=

N−1∑
n=0

fN(n, p) · δ n
N

be a probability distribution on the torus T = R/Z.
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The Randomized Version (V1)

The Alternative Randomized Version (V2)

The Problem : determining the limit of the probability distribution

Main Problem (Randomized Version 2)

Determine the limit distribution lim
N→+∞

ν
(p)
N of the survivors as the number N of

participants tends to infinity.

In other words, the problem amounts to asking what should be, in the limit,
the position on the circle which maximises the chances of survival.
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The Randomized Version (V1)

The Alternative Randomized Version (V2)

The Heuristic : an intuitive approach to the (alternative) problem

1 Expectation : the knife moves p-times towards one direction before
moving (1 − p)-times to the opposite one.

2 If p ∈ (1/3, 2/3), then the knife knife starts a biased oscillation around
the 0-player. This leads to a convergence behavior.

3 If p ∈ (0, 1/3) ∪ (2/3, 1), then the knife eventually starts circling. This
seems to lead to a divergence behavior.

Figure – The biased oscillation/circling of the knife under the (alternative) probabilistic
elimination process.
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

The Heuristic : computer simulations (alternative version)

Figure – Computer simulations for a game with 2000 players and the values of p
varying in the interval (0, 1).
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The Randomized Version (V1)

The Alternative Randomized Version (V2)

The Main Result

Theorem (F. Adiceam, S. Robertson, V. Shirandami & I. T.)

Assume that p ∈ (1/3, 2/3). Then, the sequence of probability measures(
ν
(p)
N

)
N≥1

admits a weak limit ν(p) supported in R/Z, namely,

ν
(p)
N −→

N→+∞
δ3p−1.

Moreover, in the unbiased case p = 1/2, the convergence to δ1/2 can be
expressed in the form of a Central Limit Theorem.
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The Randomized Version (V1)

The Alternative Randomized Version (V2)

The Recursion Relations and an Upper Bound for the Survival
Probabilities

Proposition ((Alternative) Recursion Relations for the Probability of Survival)

Let N ≥ 3 and p ∈ (0, 1). Whenever N ≥ 4, the probability vector
(gN(n, p))0≤n≤N−1 meets the recurrence relation

fN(n, p) =


p · fN−1(−1, p) + (1 − p) · fN−1(1, p), if n ≡ 0 (mod N)
(1 − p) · fN−1(2, p), if n ≡ 1 (mod N)
p · fN−1(−2, p), if n ≡ −1 (mod N)
p · fN−1(n − 2, p) + (1 − p) · fN−1(n + 1, p), otherwise

,

with the base (f3(0, p), f3(1, p), f3(2, p)) = (0, 1 − p, p).

Proposition (Upper Bounds for the Survival Probabilities)

Fix p ∈ (1/3, 2/3) and ϵ > 0. There exists constant α = α(ϵ, p) > 1 such
that for all N ≥ 1 and 0 ≤ n ≤ N − 1,

fN(n, p) ≪ϵ,p
α

(1+ϵ)
(3p−1) n

αN and fN(n, 1 − p) ≪ϵ,p
α

(1+ϵ)
(2−3p) n

αN .
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

Open Problems and Conjectures

Conjecture (Randomized Version 2)

Let p ∈ (0, 1/3) ∪ (2/3, 1). Then, the sequence of probability measures(
ν
(p)
N

)
N≥1

diverges.
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Background
The Randomized Version (V1)

The Alternative Randomized Version (V2)

General Rule for the Probabilistic Elimination Process

General Rule for the Probabilistic Elimination Process :
N players, enumerated from 0 to N − 1, standing on a unit circle with a
regular spacing between them and labeled anticlockwise.

The 0-th player holds first the knife.

The player holding the knife :
1. with probability p eliminates the player standing on his right.
2. with probability 1 − p eliminates the player standing on his left.
3. After eliminating, with probability q passes the knife on his right side and

with probability 1 − q passes the knife on his left side.

Figure – Illustration of the probabilistic process with the general rule.
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The Randomized Version (V1)

The Alternative Randomized Version (V2)

General Rule for the Probabilistic Elimination Process : simulations

Figure – Computer simulations for a game with 2000 players with the values of the
parameters p and q varying in [0, 1].
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The Randomized Version (V1)

The Alternative Randomized Version (V2)

Thank you for watching !

Figure – Sunset in the lake of Sao Jose do Rio Preto.
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