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Harris Contact Process: spread of infection on a connected graph
G = (V, E) with bounded degree
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Growth processes

Harris Contact Process has a static environment.
» One particle at each site of V.
» Infection spreads to neighbors always at the same rate.

» Both remain the same forever.

Dynamic environment:

» Conditions for spreading the infection change over time.

We discuss two models with dynamic environments:
» Contact Process with Dynamic Edges (CPDE)
Linker and Remenik (2020)

» Contact Process on Interchange Process (CPIP)
Hilario, U., Valesin, Vares (2025+)



Contact Process on Z%

Markov process {(; };>0 with values on {®,(®}":
» (:(z) = () means x is infected at time ¢
» (i(z) = (h) means x is healthy at time ¢

Competing states time evolution:
» Infected — healthy: rate 1
» Healthy — infected: rate A x (# infected neighbors)
Initial states: for A C V,
(¢M)e>0 is the CP started from (fl(z) = ) <= = € A.
Absorbing states: (; = ().

Phase transition:

Ae i= inf{A > 0; P, (V¢ > 0 3z: (¥ (z) = ©) > 0} € (0, 0)



Graphical Representation (CP)

— Transmissions: {7.} rate \;

B Cures: {R,} rate 1;
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Contact Process with Dynamic Edges

Linker and Remenik (2020)
Graph. dynamic environment process ¢; € {(h), D}F.
Cures. Poisson of rate 1;
Infections. Poisson of rate \.

Evolution of the model
- Edge density:  p € [0, 1];
- Initial environment:  (y 4 Bernoulli(p) bond percolation;

Updates: speed v > 0
0— 1 atrate vp,

1— 0 atrate v(1-—0p).

At any time:  (; 4 Bernoulli(p) bond percolation;

Poisson of rate ),

Transmissions: )
but only when edge is open.
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Graphical Representation (CPDE)

— Transmissions: {7.} rate \;

B Cures: {R,} rate 1;

Close: {C.} rate v(1 — p).

Open: {O.} rate vp;



Results for CPDE on Z

Linker and Remenik (2020):
Extinction/survival when v — oo or v — 0.

v — 0o: Mean-field behavior

> ‘v =00’ can be seen as a thinning of Ppps:

Transmission marks (7) 4 PPP());

Allowed transmissions <= PPP(p)).

» Heuristically, (; is Contact Process with infection rate pA.

Defining

Ao(v,p) i=infd A > 0; P,y (vt > 03z: (@) =@) >0l
P, t

Theorem. For all p € (0, 1], hﬁm Xo(v,p) = Ac(1)/p.



Results for CPDE on Z

Linker and Remenik (2020):
Extinction/survival when v — oo or v — 0.
v — 0: Static behavior

> ‘v =0 can be seen as being static:
Initial state of edges never change.

» Heuristically, (; is Contact Process with infection rate A on a
bond percolation configuration.

Theorem. For all p € [0,1), lin(lJ Ao(v,p) = 0.
v—



Results for CPDE on Z

Linker and Remenik (2020):

Interesting feature: immunity region

» Define 7 = {(v,p): Ao(v,p) = co}.

(v,p) € J means even when \ = oo there is extinction.

DA
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Other graphs:

> Almost all results are proven for infinite vertex-transitive
graphs with bounded degree.
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Results for CPDE on other graphs

Linker and Remenik (2020):

Other graphs:

> Almost all results are proven for infinite vertex-transitive
graphs with bounded degree.

» Exception:

Theorem. On Z, for all p € [0,1) we have hH(l) Ao(v,p) = o0.
v—

p<1and

{0} — —
v sufficiently small = Pyp (T o) = 0.

subcritical and

: = infection dies
frozen environment



Results for CPDE on Z¢

Theorem 1 (Hilario, U., Valesin, Vares (2022))
For Z% with d > 2:
(i) Forall p < pc(d), lim Ap(v,p) = o0

v—0

(i) For all p > pc(d), sup Ao(v,p) < oc.

Pc
b1

v>0

T Ao(+,p) bounded (i)

Ao(+, p) unbounded (i)




Results for CPDE

Remarks:

» We don't know much about v — Ag(v,p).
Only: v LXo(v,p) is non-increasing.

» Theorem 1 (ii) shows p; < p.(d).
For d =1 it holds p; < 1 = p(1).

» Open: What happens at p = p.(d) for d > 27

Related works:
» Broman (2007)
» Steif and Warfheimer (2008)
» Seiler and Sturm (2023)
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Contact process on Interchange Process

State space. (; € {0,®, D}%".

0 <> no particle, (b <> healthy particle, () <> infected particle;

Graphical Construction. Has transmissions, cures and jumps.

Evolution of the model
» Initial environment: proportion of particles p € (0, 1]

- Go(0) =@
- For other z € Z%: independently,

P(¢o(z) =®) =p and P(((z) =0)=1-p
» Jumps: speed v > 0

- Interchange: jump switches any two states;
- = particles perform Simple Random Walks;

> At any time:  particles distributed as Bernoulli percolation;

» Particles carry the infection;



Contact process on Interchange Process

Let Py, denote the law of ((¢)¢>0. Define

O(A,v,p) := Py, p(for all ¢ there exists = such that (;(z) = (),
Ae(v,p) :=inf{A > 0: O(A,v,p) > 0}.

Question. What is the behavior of A.(v,p) as v — 0 and v — c0?



Contact process on Interchange Process

Let Py, denote the law of ((¢)¢>0. Define

O(A,v,p) := Py, p(for all ¢ there exists = such that (;(z) = (),
Ae(v,p) :=inf{A > 0: O(A,v,p) > 0}.

Question. What is the behavior of A.(v,p) as v — 0 and v — c0?

Special case: p=1
» Reduces to the known contact + stirring
» Behavior as v — 0o studied since late 1980s:
(De Masi, Ferrari, Lebowitz; Durrett, Neuhauser; Katori; Konno;
Bransom et al; Berezin, Mytnik; Levit, Valesin; ...)
» Critical parameter: comparison with branching process
- Birth with rate 2d)\ and death with rate 1.
- = Ao~ g5 asV— o0

» Higher order approximations in v for A, are known.
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» When particle tries to infect: independent neighborhood
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Results for CPIP

Case v — 00 :

Mean-field heuristics: similar to Branching Process

» When particle tries to infect: independent neighborhood
— birth with rate 2dp\ and death with rate 1.

Theorem 2 (Hilario, U., Valesin, Vares (2025+))
For CPIP on Z¢ with d > 1 with p € (0, 1]:

Jim (p) = 57

2dp
In other words we have:
Extinction. 2dpA <1 =  ©O(\,v,p) =0, Vv > vq.
Survival. 2dpA >1 = O(\,v,p) >0, Vv > vy.
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Results for CPIP

Case v — 0 : As the previous heuristics suggests:

subcritical and

. = infection dies
frozen environment

Theorem 3 (Hilario, U., Valesin, Vares (2025+))
For CPIP on Z¢ with p < p.(Z%, site) we have

lim\ = 0.
lim c(p,v) = o0

Remarks.
» We have not addressed survival part.

» Theorem 3 also holds when Interchange Process is replaced by
Exclusion Process.

» Open: Is there an for v > 07



Proof Ideas



Renormalization

Multi-scale renormalization. For N € N, define scale IV boxes:
QN = [—LN,LN]d X [O,hN].

Cascading events.
» Define events {Qy is bad}.
> QOyisbad = two far away copies of Qn_1 are bad.

Decoupling.  P(Qn.1 is bad) < P(Qy is bad)? + small error.

On(w1,t1) and Qn(x2,12) . On(w1,t1) and Qn (w2, t2)
are far away are close to independent

Trigger. Choose parameters so that P(Qy is bad) is small.

Induction argument —  P(Qy is bad) — 0.



Renormalization for Extinction

Cascading events.
» Ly =a - Ly and hy = a® - hg;
» On(z,t) = (x,t) + Qu is bad if it is half-crossed.

/1
’
/
’
4

!
|
|
|
|
|
|
:
- - - )

’ hn 1,\/{7”
«/[iLN,LN]dl — /
2LN 2L N

P(7% = 00) < P(Qy is half—crossed)NﬂoO.



Cascading events for Extinction

half-crossing of Qy = Two half-crossings

Bo [ [N

2d
H(Qy) == {Qn haIf—crossed}CU( U H(B)mH(B')).

J=0 (B,B")eB;x B

Entropy: number of pairs of boxes is C'(d, «) (independent of V).



Decoupling — Discrepancy for IP

Interchange flow:
For z € Z% and 5 > 0 define t s ®(x, s,t) such that

» &O(x,s,s) =z for every x and for t > s;

> O(z,5,t—) =y, t € Ty = P(z,5,1) = 2;

> O(z,5,t—) =y, t ¢ Usny Ty = P(,8,1) =y
» For s >t, ®(-,s,t) is the inverse function.

Flow gives the trajectories of IP: & (x) = & (P (x,¢,0)).

Definition. (Discrepancy probability for the IP)
Let ® (rate v = 1) be the flow. For < L € Nand ¢t > 0,

3o € 0By (L),

. ip =
discr'? (¢, L, t) P<0§3<8/§t

. B(z,5,5) € 8B0(€))



Decoupling — Discrepancy for CPIP

Containment flow:
Forz € Z% and t > s > 0 define t — U(x, s,t) C Z%:

infected set at time ¢ of a CPIP that ignores cure marks

‘IJ(IL‘a Sat) = started from Cs(x) = @ and @ otherwise

Definition. (Discrepancy probability for the CPIP)
Let ¥ be the containment flow. For { < L € Nand t > 0,

discri,q;\ (¢, L,t)

o IF’( there exist x € OBy(L), y € 0By(¢) and s, s’ € [0, 1] )
T with 0 < s < s’ <t such that y € ¥(x, s, s’) ’



Decoupling — Discrepancy estimates

Lemma. (Discrepancy probability estimate for the IP)
Consider ® with ratev=1. For{ < L €N and t > 0,

i L—7/
discr (¢, L, t) < 16ed>t LT exp {—(L —{)log <1 + 2t) } .

Proof. SRW estimates.

Lemma. (Discrepancy probability estimate for the CPIP)
Foranyv >0, A>0, ¢ LeNwithf{<Landt>1, we have

discr'® (¢, L, 1)

- 1 L—7
< cmax(P (1) 18 exp{ (L — ) log (14 775 )

Proof. Standard generator computations.



Spatial Decoupling

Lemma. (Spatial decoupling)
» Let ((t)t>0 be the CPIP with parameters v and A.
> Let L€ N, x1,20 € Z%, |21 — 22]| > 2+ 2, and ¢ > 0.

» Let A;, (i = 1,2) be an event whose occurrence depends only

on {(s(y) : (y,8) € By, (€) x [0,1]}.
Then,

’COV(]lAU ]lA2)| < 4discri,c7§(€a L%Hxl - CCQ”J,t),

Temporal decoupling is more delicate.



Temporal Decoupling

Baldasso and Teixeira (2018): decoupling estimates for IP (d = 1):

> Let Q1, Oy be two well-separated space-time boxes:
d := dist(Q1, Q2) > 6(per(Q1) + per(Q2)) + C1,

> Let fi, fo: {0,1}%F = [0,1] be
- non-decreasing functions;
- fi supported on Q;, fori =1,2

» Decoupling with sprinkling: for p < p’ € [0, 1]

Er, (fif2) < Er, (f1)Ex, (f2) + c1d? eXp[—Cl_l(p/ - p)2d1/4],

where 7, is the Bernoulli product measure with density p.

Problem. We need a refinement
- valid for all d;

- desintegrated version



Temporal Decoupling

T

0L/4 L/2 L

Lemma. (Stochastic domination between IPs)
Given &, ¢ € {0, 1}Zd, there exists a coupling such that for any
/! <LeN 0<t<Tandpec]|01]

E(x) > &(z) for all (x,5) € Bo(L/4) x [t,T]

outside an event of small probability.
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» Every ¢ particle that reaches B meets a £ particle before ¢.



Temporal Decoupling

O

:]E;:] | E;]:]E%]:] t/02]

g ] I intervals
0 Emﬂuumgmm

By (0) 0L/4 L2 L

» There are ‘less ¢ particles than &’ particles’.
» Every ¢ particle that reaches B meets a £ particle before ¢.
> For independent SRWs (rate 1) on Z%:

meet () := inf{P, ,(3Is < *: Xy = X)) : 2,y € Bo({)} > ¢

(d=2)v0~



Decoupling — error control

» There are ‘less ¢ particles than ¢’ particles’:
Use p € (0, 1] and functions ¢g" and g*.

o for some s < t and some box B with radius ¢ contained
7= in Bo(L), we have [{y € B : &(y) = 1}[> p| B
L_p for some s < t and some box B with radius ¢ contained

o in Bo(L), we have [{y € B: &.(y) = 1}|< p|B|



Decoupling — error control

» There are ‘less ¢ particles than &’ particles’:
Use p € (0, 1] and functions ¢g" and g*.

ro_ for some s < t and some box B with radius ¢ contained

g = in By(L), we have [{y € B : &(y) = 1}> p|B|
L_p for some s < t and some box B with radius ¢ contained

g= in Bo(L), we have [{y € B: &.(y) = 1}|< p|B|

» Every £ particle that reaches B(L/4) x [t,T]: discrepancy

i L
diser™(L/4,1/27) < T2 exp { (/o (14 51 ) }.



Decoupling — error control

» There are ‘less ¢ particles than &’ particles’:
Use p € (0, 1] and functions ¢g" and g*.

ro_ for some s < t and some box B with radius ¢ contained

9= in Bo(L), we have [{y € B: &(y) = 1}|> p|B|
L_p for some s < t and some box B with radius ¢ contained

g= in Bo(L), we have [{y € B: &.(y) = 1}|< p|B|

» Every £ particle that reaches B(L/4) x [t,T]: discrepancy

discr'P(L/4,L/2,T) < ¢T'L L exp {—(L/4) log <1 + L) } .

8T
» If the above holds:
- Many attempts for pairing.
- Union bound: control every particle of B(L/2).

< |Bo(L/2)| - (1 — meet(£)) /)



Temporal Decoupling

Lemma. (Stochastic domination between IPs)
Given &, ¢ € {0, 1}Zd, there exists a coupling such that for any
¢t<LeN 0<t<Tandpel0l]:

E(x) > &(z) forall (x,5) € Bo(L/4) x [t,T]
outside an event of probability at most:
g (0, L,t,p, &) + g* (¢, L, t,p, &) + erreoup (¢, L, t, T),
where

erTeonp = | Bo(L/2)| - (1 — meet(£))/*) + diser™(L/4, L/2,T).



Temporal Decoupling

After integrating, we recover Baldasso and Teixeira

Lemma. For /< L e, t>0and0<p<p <1
[ OLEpOm@) ad [ L) m(ds)
{0,1}% {0,1}%

are both smaller than

(2L +1)¢- (e(% 2yl e> - exp {_2(% F 14— p)2} .



Renormalization for Extinction (v — 00)

Scales and constants.
» Ly =a - Loand hy =a” -hy (a = 128);
> Lo = +/Vvlogh(v) and hg = 2log3(v);
» Fix pg > p so that 2dpo\ < 1, and take, for each n > 1:

Dp 1= (1 — 2_")]0 + 27 "pg.
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Renormalization for Extinction (v — 00)

Scales and constants.
» Ly =a - Loand hy =a” -hy (a = 128);
> Lo = +/Vvlogh(v) and hg = 2log3(v);
» Fix pg > p so that 2dpo\ < 1, and take, for each n > 1:

Dp 1= (1 — 2_”)1) + 27 "pg.

Scale 0. For v large, if & is stochastically dominated by m,, then

supPy, (H(Qo(z,1))) < 6710g3/2(v).
x,t

Scale n. Let 6, := (2C(d, )™ L.
For v large enough (uniformly over n) we establish:

£ is stochastically

(HCx) dominated by 7,

== SupPA,v (H(Qn(xvt))) < 571

x,t



Renormalization for Extinction (v — o) - proving (HC,,)

Lemma. (Horizontal decoupling)

Let n > 1.

Assume (HC,,) and & stochastically dominated by .
Then V (z, ), (y, 1) with ||z — y|| > 4L, and [s — t| < 2h,;:

P (H(Qn(z,5)) N H(Qn(y,1))) < 05 +v77".
Lemma. (Vertical decoupling)
Let n > 1.

Assume (HC,,) and &y stochastically dominated by 7, .
Then, V(x, s), (y,t) with |s — t| > 2h,,:

B (H(Qu(x,5)) N H(Qu(y,1))) < 52 +v".



Renormalization for other results

Extinction for CPIP (v — 0).
» Subcritical site percolation:
Largest cluster in B(L) has size of order log L.

» With high probability, CP dies on a finite graph of size n in a
time of order e“".

» The argument also implies that replacing the Interchange
Process with the Exclusion Process the same result holds.



Renormalization for other results

Extinction for CPIP (v — 0).

» Subcritical site percolation:
Largest cluster in B(L) has size of order log L.

» With high probability, CP dies on a finite graph of size n in a
time of order e“".

» The argument also implies that replacing the Interchange
Process with the Exclusion Process the same result holds.

Survival for CPIP (v — o). Much more involved:
» Definition of good boxes;
» Suitable propagation of “good boxes” along various scales;
» Control of scale 0 already more delicate.

Remark. Replacing the Interchange Process with the Exclusion
Process when v — 0o seems much harder.



Thank You!
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