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Contact Process on Zd

Markov process {ζt}t≥0 with values on { h , i }V :
▶ ζt(x) = i means x is infected at time t

▶ ζt(x) = h means x is healthy at time t

Competing states time evolution:
▶ Infected −→ healthy: rate 1
▶ Healthy −→ infected: rate λ× (# infected neighbors)

Initial states: for A ⊂ V ,

(ζAt )t≥0 is the CP started from ζA0 (x) = i ⇐⇒ x ∈ A.

Absorbing states: ζt ≡ h .

Phase transition:

λc := inf{λ > 0;Pλ(∀t > 0 ∃x : ζ{0}t (x) = i ) > 0} ∈ (0,∞)



Graphical Representation (CP)

0

t

G

Cures: {Rx} rate 1; Transmissions: {Te} rate λ;



Contact Process with
Dynamic Edges



Contact Process with Dynamic Edges

Linker and Remenik (2020)
Graph. dynamic environment process ζt ∈ { h , i }E .
Cures. Poisson of rate 1;

Infections. Poisson of rate λ.

Evolution of the model
- Edge density: p ∈ [0, 1];

- Initial environment: ζ0
d
= Bernoulli(p) bond percolation;

- Updates: speed v > 0

0 −→ 1 at rate vp,

1 −→ 0 at rate v(1− p).

- At any time: ζt
d
= Bernoulli(p) bond percolation;

- Transmissions:
Poisson of rate λ,
but only when edge is open.
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Graphical Representation (CPDE)

0

t

G
Cures: {Rx} rate 1; Transmissions: {Te} rate λ;
Open: {Oe} rate vp; Close: {Ce} rate v(1− p).
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Results for CPDE on Z

Linker and Remenik (2020):
Extinction/survival when v → ∞ or v → 0.

v → ∞: Mean-field behavior
▶ ‘v = ∞’ can be seen as a thinning of Ppps:

Transmission marks (Te)
d
= PPP(λ);

Allowed transmissions d
= PPP(pλ).

▶ Heuristically, ζt is Contact Process with infection rate pλ.
Defining

λ0(v, p) := inf
{
λ > 0; Pv,p,λ

(
∀t > 0 ∃x : ζ{0}t (x) = i

)
> 0

}
.

Theorem. For all p ∈ (0, 1], lim
v→∞

λ0(v, p) = λc(1)/p.



Results for CPDE on Z

Linker and Remenik (2020):
Extinction/survival when v → ∞ or v → 0.

v → 0: Static behavior
▶ ‘v = 0’ can be seen as being static:

Initial state of edges never change.
▶ Heuristically, ζt is Contact Process with infection rate λ on a

bond percolation configuration.

Theorem. For all p ∈ [0, 1), lim
v→0

λ0(v, p) = ∞.



Results for CPDE on Z

Linker and Remenik (2020):

Interesting feature: immunity region
▶ Define I = {(v, p) : λ0(v, p) = ∞}.

(v, p) ∈ I means even when λ = ∞ there is extinction.

p1

p

v

1

I



Results for CPDE on other graphs

Linker and Remenik (2020):

Other graphs:
▶ Almost all results are proven for infinite vertex-transitive

graphs with bounded degree.
▶ Exception:

Theorem. On Z, for all p ∈ [0, 1) we have lim
v→0

λ0(v, p) = ∞.

p < 1 and
v sufficiently small

=⇒ Pv,p,λ(τ
{0} = ∞) = 0.

subcritical and
frozen environment

=⇒ infection dies
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Results for CPDE on Zd

Theorem 1 (Hilário, U., Valesin, Vares (2022))
For Zd with d ≥ 2:
(i) For all p < pc(d), lim

v→0
λ0(v, p) = ∞

(ii) For all p > pc(d), sup
v>0

λ0(v, p) < ∞.

p1
pc

p

v

1

I

λ0(·, p) bounded (ii)

λ0(·, p) unbounded (i)



Results for CPDE

Remarks:
▶ We don’t know much about v 7→ λ0(v, p).

Only: v 7→ 1
vλ0(v, p) is non-increasing.

▶ Theorem 1 (ii) shows p1 ≤ pc(d).
For d = 1 it holds p1 < 1 = pc(1).

▶ Open: What happens at p = pc(d) for d ≥ 2?

Related works:
▶ Broman (2007)
▶ Steif and Warfheimer (2008)
▶ Seiler and Sturm (2023)



Contact Process on
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Contact process on Interchange Process

State space. ζt ∈ {0, h , i }Zd
.

0 ↔ no particle, h ↔ healthy particle, i ↔ infected particle;

Graphical Construction. Has transmissions, cures and jumps.

Evolution of the model
▶ Initial environment: proportion of particles p ∈ (0, 1]

- ζ0(0) = i ;
- For other x ∈ Zd: independently,

P(ζ0(x) = h ) = p and P(ζ0(x) = 0) = 1− p

▶ Jumps: speed v > 0

- Interchange: jump switches any two states;
- =⇒ particles perform Simple Random Walks;

▶ At any time: particles distributed as Bernoulli percolation;
▶ Particles carry the infection;
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Contact process on Interchange Process

Let Pλ,v,p denote the law of (ζt)t≥0. Define

Θ(λ, v, p) := Pλ,v,p(for all t there exists x such that ζt(x) = i ),

λc(v, p) := inf{λ > 0 : Θ(λ, v, p) > 0}.

Question. What is the behavior of λc(v, p) as v → 0 and v → ∞?

Special case: p = 1

▶ Reduces to the known contact + stirring
▶ Behavior as v → ∞ studied since late 1980s:

(De Masi, Ferrari, Lebowitz; Durrett, Neuhauser; Katori; Konno;
Bransom et al; Berezin, Mytnik; Levit, Valesin; . . . )

▶ Critical parameter: comparison with branching process
- Birth with rate 2dλ and death with rate 1.
- =⇒ λc ∼ 1

2d as v → ∞.

▶ Higher order approximations in v for λc are known.
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Results for CPIP

Case v → ∞ :

Mean-field heuristics: similar to Branching Process
▶ When particle tries to infect: independent neighborhood

=⇒ birth with rate 2dpλ and death with rate 1.

Theorem 2 (Hilário, U., Valesin, Vares (2025+))
For CPIP on Zd with d ≥ 1 with p ∈ (0, 1]:

lim
v→∞

λc(p, v) =
1

2dp
.

In other words we have:
Extinction. 2dpλ < 1 =⇒ Θ(λ, v, p) = 0, ∀v ≥ v0.

Survival. 2dpλ > 1 =⇒ Θ(λ, v, p) > 0, ∀v ≥ v1.
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Results for CPIP

Case v → 0 : As the previous heuristics suggests:

subcritical and
frozen environment

=⇒ infection dies

Theorem 3 (Hilário, U., Valesin, Vares (2025+))
For CPIP on Zd with p < pc(Zd, site) we have

lim
v↓0

λc(p, v) = ∞.

Remarks.
▶ We have not addressed survival part.
▶ Theorem 3 also holds when Interchange Process is replaced by

Exclusion Process.
▶ Open: Is there an immunity region for v > 0?
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Proof Ideas



Renormalization

Multi-scale renormalization. For N ∈ N, define scale N boxes:

QN := [−LN , LN ]d × [0, hN ].

Cascading events.
▶ Define events {QN is bad}.
▶ QN is bad =⇒ two far away copies of QN−1 are bad.

Decoupling. P(QN+1 is bad) ≤ P(QN is bad)2 + small error.

QN (x1, t1) and QN (x2, t2)
are far away

=⇒ QN (x1, t1) and QN (x2, t2)
are close to independent

Trigger. Choose parameters so that P(Q0 is bad) is small.

Induction argument =⇒ P(QN is bad) → 0.



Renormalization for Extinction

Cascading events.
▶ LN = αN · L0 and hN = αN · h0;
▶ QN (x, t) = (x, t) +QN is bad if it is half-crossed.

−→e1

t

Zd−1

hN

2LN

[−LN , LN ]d−1

hN

2LN

P(τ0 = ∞) ≤ P(QN is half-crossed)N→∞−→ 0.



Cascading events for Extinction

half-crossing of QN =⇒ Two half-crossings

B0

B′
0

2LN

hN

2α · LN−1

hN−1

LN−1

2LN−1

H(QN ) := {QN half-crossed} ⊂
2d⋃
j=0

( ⋃
(B,B′)∈Bj×B′

j

H(B)∩H(B′)
)
.

Entropy: number of pairs of boxes is C(d, α) (independent of N).



Decoupling – Discrepancy for IP

Interchange flow:
For x ∈ Zd and s ≥ 0 define t 7→ Φ(x, s, t) such that
▶ Φ(x, s, s) = x for every x and for t > s;
▶ Φ(x, s, t−) = y, t ∈ J{y,z} =⇒ Φ(x, s, t) = z;

▶ Φ(x, s, t−) = y, t /∈ ∪z∼yJ{y,z} =⇒ Φ(x, s, t) = y.

▶ For s > t, Φ(·, s, t) is the inverse function.

Flow gives the trajectories of IP: ξt(x) = ξ0(Φ(x, t, 0)).

Definition. (Discrepancy probability for the IP)
Let Φ (rate v = 1) be the flow. For ℓ < L ∈ N and t > 0,

discrip(ℓ, L, t) := P
( ∃x ∈ ∂B0(L),

0 ≤ s < s′ ≤ t
: Φ(x, s, s′) ∈ ∂B0(ℓ)

)



Decoupling – Discrepancy for CPIP

Containment flow:
For x ∈ Zd and t ≥ s ≥ 0 define t 7→ Ψ(x, s, t) ⊂ Zd:

Ψ(x, s, t) :=
infected set at time t of a CPIP that ignores cure marks
started from ζs(x) = i and h otherwise

Definition. (Discrepancy probability for the CPIP)
Let Ψ be the containment flow. For ℓ < L ∈ N and t > 0,

discricpv,λ(ℓ, L, t)

:= P
( there exist x ∈ ∂B0(L), y ∈ ∂B0(ℓ) and s, s′ ∈ [0, t]

with 0 ≤ s < s′ ≤ t such that y ∈ Ψ(x, s, s′)

)
.



Decoupling – Discrepancy estimates

Lemma. (Discrepancy probability estimate for the IP)
Consider Φ with rate v = 1. For ℓ < L ∈ N and t > 0,

discrip(ℓ, L, t) ≤ 16ed3tLd−1 exp

{
−(L− ℓ) log

(
1 +

L− ℓ

2t

)}
.

Proof. SRW estimates.

Lemma. (Discrepancy probability estimate for the CPIP)
For any v > 0, λ > 0, ℓ, L ∈ N with ℓ < L and t ≥ 1, we have

discricpv,λ(ℓ, L, t)

≤ cmax(v2, 1)(ℓL)d−1· te8dλt· exp
{
−1

2
(L− ℓ) log

(
1 +

L− ℓ

4(v + λ)t

)}
.

Proof. Standard generator computations.



Spatial Decoupling

Lemma. (Spatial decoupling)
▶ Let (ζt)t≥0 be the CPIP with parameters v and λ.
▶ Let ℓ ∈ N, x1, x2 ∈ Zd, ∥x1 − x2∥ ≥ 2ℓ+ 2, and t > 0.
▶ Let Ai, (i = 1, 2) be an event whose occurrence depends only

on {ζs(y) : (y, s) ∈ Bxi(ℓ)× [0, t]}.
Then,

|Cov(1A1 ,1A2)| ≤ 4discricpv,λ(ℓ, ⌊
1
2∥x1 − x2∥⌋, t),

Temporal decoupling is more delicate.



Temporal Decoupling

Baldasso and Teixeira (2018): decoupling estimates for IP (d = 1):
▶ Let Q1,Q2 be two well-separated space-time boxes:

d := dist(Q1,Q2) ≥ 6(per(Q1) + per(Q2)) + C1,

▶ Let f1, f2 : {0, 1}Z×R → [0, 1] be
- non-decreasing functions;
- fi supported on Qi, for i = 1, 2

▶ Decoupling with sprinkling: for p < p′ ∈ [0, 1]

Eπp(f1f2) ≤ Eπp′ (f1)Eπp′ (f2) + c1d
2 exp

[
−c−1

1 (p′ − p)2d1/4
]
,

where πp is the Bernoulli product measure with density p.

Problem. We need a refinement
- valid for all d;
- desintegrated version



Temporal Decoupling

0 L/4 L/2 L
0

t

T
B

Lemma. (Stochastic domination between IPs)
Given ξ, ξ′ ∈ {0, 1}Zd

, there exists a coupling such that for any
ℓ < L ∈ N, 0 < t ≤ T and p ∈ [0, 1]:

ξ′s(x) ≥ ξs(x) for all (x, s) ∈ B0(L/4)× [t, T ]

outside an event of small probability.



Temporal Decoupling

0 L/4 L/2 L
0

t

T
B

⌊t/ℓ2⌋
intervals

Bx(ℓ)

▶ There are ‘less ξ particles than ξ′ particles’.

▶ Every ξ particle that reaches B meets a ξ′ particle before t.
▶ For independent SRWs (rate 1) on Zd:

meet(ℓ) := inf{Px,y(∃s ≤ ℓ2 : Xs = X ′
s) : x, y ∈ B0(ℓ)} ≥ c

ℓ(d−2)∨0 .
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Decoupling – error control

▶ There are ‘less ξ particles than ξ′ particles’:
Use p ∈ (0, 1] and functions g↑ and g↓.

g↑ := P
(

for some s ≤ t and some box B with radius ℓ contained
in B0(L), we have |{y ∈ B : ξs(y) = 1}|> p|B|

)
g↓ := P

(
for some s ≤ t and some box B with radius ℓ contained

in B0(L), we have |{y ∈ B : ξ′s(y) = 1}|< p|B|

)

▶ Every ξ particle that reaches B(L/4)× [t, T ]: discrepancy

discrip(L/4, L/2, T ) ≤ cTLd−1 exp

{
−(L/4) log

(
1 +

L

8T

)}
.

▶ If the above holds:
- Many attempts for pairing.
- Union bound: control every particle of B(L/2).

≤ |B0(L/2)| · (1−meet(ℓ))⌊t/ℓ
2⌋ .
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Temporal Decoupling

Lemma. (Stochastic domination between IPs)
Given ξ, ξ′ ∈ {0, 1}Zd

, there exists a coupling such that for any
ℓ < L ∈ N, 0 < t ≤ T and p ∈ [0, 1]:

ξ′s(x) ≥ ξs(x) for all (x, s) ∈ B0(L/4)× [t, T ]

outside an event of probability at most:

g↑(ℓ, L, t, p, ξ) + g↓(ℓ, L, t, p, ξ′) + errcoup(ℓ, L, t, T ),

where

errcoup := |B0(L/2)| · (1−meet(ℓ))⌊t/ℓ
2⌋ + discrip(L/4, L/2, T ).



Temporal Decoupling

After integrating, we recover Baldasso and Teixeira

Lemma. For ℓ < L ∈, t > 0 and 0 ≤ p < p′ ≤ 1∫
{0,1}Zd

g↑(ℓ, L, t, p′, ξ) πp(dξ) and
∫
{0,1}Zd

g↓(ℓ, L, t, p, ξ) πp′(dξ)

are both smaller than

(2L+ 1)d ·
(
e(2ℓ+ 2)dt+ e

)
· exp

{
−2(2ℓ+ 1)d(p′ − p)2

}
.



Renormalization for Extinction (v → ∞)

Scales and constants.
▶ LN = αN · L0 and hN = αN · h0 (α = 128);
▶ L0 =

√
v log4(v) and h0 = 2 log3(v);

▶ Fix p0 > p so that 2dp0λ < 1, and take, for each n ≥ 1:

pn :=
(
1− 2−n

)
p+ 2−np0.

Scale 0. For v large, if ξ0 is stochastically dominated by πp0 then

sup
x,t

Pλ,v (H(Q0(x, t))) ≤ e− log3/2(v).

Scale n. Let δn := (2C(d, α))−n−1.
For v large enough (uniformly over n) we establish:

(HCn)
ξζ0 is stochastically
dominated by πpn

=⇒ sup
x,t

Pλ,v (H(Qn(x, t))) < δn.
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Renormalization for Extinction (v → ∞) - proving (HCn)

Lemma. (Horizontal decoupling)
Let n ≥ 1.
Assume (HCn) and ξ0 stochastically dominated by πpn .
Then ∀ (x, s), (y, t) with ∥x− y∥ ≥ 4Ln and |s− t| ≤ 2hn:

P (H(Qn(x, s)) ∩H(Qn(y, t))) ≤ δ2n + v−2n .

Lemma. (Vertical decoupling)
Let n ≥ 1.
Assume (HCn) and ξ0 stochastically dominated by πpn+1 .
Then, ∀(x, s), (y, t) with |s− t| > 2hn:

P (H(Qn(x, s)) ∩H(Qn(y, t))) ≤ δ2n + v−2n .



Renormalization for other results

Extinction for CPIP (v → 0).
▶ Subcritical site percolation:

Largest cluster in B(L) has size of order logL.
▶ With high probability, CP dies on a finite graph of size n in a

time of order ecn.
▶ The argument also implies that replacing the Interchange

Process with the Exclusion Process the same result holds.

Survival for CPIP (v → ∞). Much more involved:
▶ Definition of good boxes;
▶ Suitable propagation of “good boxes” along various scales;
▶ Control of scale 0 already more delicate.

Remark. Replacing the Interchange Process with the Exclusion
Process when v → ∞ seems much harder.
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Thank You!
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