THE EFFECT OF MEASUREMENT ERROR ON BINARY RANDOMIZED RESPONSE TECHNIQUE (RRT) MODELS

B. Meche¹ V. Poruri² Sat Gupta³ Sadia Khalil^{3,4}

¹University of Louisiana at Lafayette & University of Chicago

²University of California, Berkeley

³University of North Carolina Greensboro

⁴Lahore College for Women University

This research was funded by the National Science Foundation Grant No. DMS-2244160.

INTRODUCTION

MEASUREMENT ERROR IN RRT MODELS

SIMULATION RESULTS

DISCUSSION OF MEASUREMENT ERROR

PROPOSED MEASURE OF PRIVACY

FUTURE WORK

INTRODUCTION

Measurement error:

- Difference between the true value and the recorded value
- Quantitative models: recorded response Z, true response Y, and measurement error U

$$Z = Y + U$$

Binary models: recorded response Z, true response Y, and measurement error C

$$Z = Y + C \mod 2$$

Goal: Observe the effect that measurement error has on binary RRT models

Warner model

Greenberg model

Lovig Model (2021)

GREENSBORO Department of Mathematics & Statistics

Research question: Which model is best?

 A unified measure of efficiency and privacy proposed by Lovig et al. (2021)

$$\mathbb{M} = \frac{PP^a}{MSE^b}$$

- *PP*: privacy protection = $\frac{1 \text{privacy loss}}{1 \pi_x}$
- a, b are weights for the importance of efficiency and privacy respectively
- Lovig model is the best model by M
- However, we suggest that accounting for measurement error will affect a researcher's model choice
- We will apply measurement error to the three models and compare the effect that measurement error has on each

MEASUREMENT ERROR IN RRT MODELS

Meche et al. (2024) Model: ACCOUNTING FOR MEASUREMENT ERROR

Lovig model for measurement error:

Question 3: (With Mixture Model) "Do you have the sensitive trait?"

$$P_{y} = (A\pi_{x}(p-q) + \pi_{y}(1-p-q))(1-2m) + m(1-2q) + q$$

$$\hat{\pi}_{x} = \frac{\widehat{P_{y}} - \hat{m}(1 - 2q) - q - \pi_{y}(1 - p - q)(1 - 2\hat{m})}{\hat{A}(1 - 2\hat{m})(p - q)}$$
$$\mathbb{E}[\widehat{P_{y}}] = P_{y}, \text{ Var}[\widehat{P_{y}}] = \frac{P_{y}(1 - P_{y})}{n}$$

Lovig model for measurement error: estimating measurement error *m*

Question 2: (Rigged question where $\pi_x = 0$) "Are you a robot?"

$${{P_{{y_0}}}} = m\left({1 - 2q - 2{\pi _y}\left({1 - p - q}
ight)}
ight) + q + \left({1 - p - q}
ight){\pi _y}$$

$$\widehat{m} = \frac{\widehat{P_{y0}} - q - \pi_y(1 - p - q)}{1 - 2q - 2\pi_y(1 - p - q)}$$

$$Var[\widehat{m}] = \frac{Var[\widehat{P_{y_0}}]}{(1 - 2q - 2\pi_y(1 - p - q))^2} = \frac{P_{y_0}(1 - P_{y_0})}{n(1 - 2q - 2\pi_y(1 - p - q))^2}$$

Lovig model for measurement error:

Question 1: (With Greenberg Model) "Do you trust the model?"

$$P_{yg} = p_g A + (1 - p_g) \pi_{yg}$$
$$\hat{A} = \frac{\widehat{P_{yg}} - (1 - p_g) \pi_{yg}}{p_g}$$
$$\mathbb{E}[\widehat{P_{yg}}] = P_{yg} ; \text{Var}[\widehat{P_{yg}}] = \frac{P_{yg}(1 - P_{yg})}{n}$$
$$\mathbb{E}[\hat{A}] = A ; \text{Var}[\hat{A}] = \frac{P_{yg}(1 - P_{yg})}{np_g^2}$$

Measurement error: Lovig model

Lovig model for measurement error: estimating prevalence of sensitive trait $\hat{\pi}_x$ using a first order Taylor's approximation $f(x, y, z) \approx f(x_0, y_0, z_0) + (x - x_0)f_x(x_0, y_0, z_0) + (y - y_0)f_y(x_0, y_0, z_0)$ $+(z-z_0)f_z(x_0, v_0, z_0),$ $\hat{\pi}_{x} = \frac{P_{y} - \hat{m}(1 - 2q) - q - \pi_{y}(1 - p - q)(1 - 2\hat{m})}{\hat{A}(1 - 2\hat{m})(p - q)}$ $\hat{\pi}_{x} \approx \frac{P_{y} - m(1 - 2q) - q - \pi_{y}(1 - p - q)(1 - 2m)}{A(1 - 2m)(p - q)}$ $+\frac{P_y-P_y}{A(1-2m)(p-q)}$ $-(\hat{A}-A)\left[\frac{P_{y}-m(1-2q)-q-\pi_{y}(1-p-q)(1-2m)}{A^{2}(1-2m)(p-q)}\right]$ $+(\hat{m}-m)\left[\frac{2P_{y}-1}{A(p-q)(1-2m)^{2}}\right]$

Lovig model for measurement error: MSE of estimated prevalence of sensitive trait $\hat{\pi}_x$ using a Taylor's approximation

$$\mathbb{E}[\hat{\pi}_{x}] = \pi_{x}$$

$$\mathsf{MSE}[\hat{\pi}_{x}] = \frac{\mathsf{Var}[\widehat{P_{y}}]}{[A(1-2m)(p-q)]^{2}}$$

$$+ \mathsf{Var}[\widehat{m}] \left[\frac{2P_{y}-1}{A(p-q)(1-2m)^{2}}\right]^{2}$$

$$+ \mathsf{Var}[\widehat{A}] \left[\frac{P_{y}-m(1-2q)-q-\pi_{y}(1-p-q)(1-2m)}{A^{2}(1-2m)(p-q)}\right]^{2}$$

Approach: We may treat the Warner and Greenberg models as special cases of the Lovig model

- Warner model: q = 1 p
- Greenberg model: q = 0

Now, we may use the results from the Lovig model to solve for measurement error *m*, trust *A*, and sensitive trait π_x statistics.

SIMULATION RESULTS

SIMULATION RESULTS: NOT ACCOUNTING FOR MEASUREMENT ERROR

Table 1. Estimates of $\hat{\pi}_{xu}$ (*not* accounting for measurement error) and $\hat{\pi}_x$ (accounting for measurement error). Results aggregated over 10000 trials with n = 500, p = 0.7, q = 0.15, $\pi_x = 0.4$, and $\pi_y = \frac{1}{12}$.

q	Α	т	$\hat{\pi}_{xu}$	$\hat{\pi}_{x}$
0.15	1	0	0.3998	0.4003
0.15	1	0.01	0.4041	0.3996
0.15	1	0.05	0.4208	0.4003
0.15	1	0.1	0.4432	0.4014
0.15	0.95	0	0.3991	0.3998
0.15	0.95	0.01	0.4048	0.3995
0.15	0.95	0.05	0.4240	0.3995
0.15	0.95	0.1	0.4489	0.3997
0.15	0.9	0	0.4002	0.4006
0.15	0.9	0.01	0.4061	0.3993
0.15	0.9	0.05	0.4284	0.3996
0.15	0.9	0.1	0.4563	0.4004

SIMULATION RESULTS: GREENBERG MODEL

Α	Â	т	ĥ	MSE[<i>m̂</i>]	$\hat{\pi}_{X}$	$MSE[\hat{\pi}_{x}]$	PP	\mathbb{M}
1	0.9997	0.01	0.0099	0.0001 0.0001	0.4001	0.0009 0.0010	0.1119 0.1117	123.2866 107.6471
1	1.0002	0.05	0.0499	0.0001 0.0001	0.3997	0.0011 0.0012	0.2234 0.2234	199.7414 180.9270
1	0.9995	0.1	0.1003	0.0002 0.0002	0.3994	0.0014 0.0016	0.3494 0.3488	245.2008 222.2470
0.95	0.9503	0.01	0.0101	0.0001 0.0001	0.3997	0.0010 0.0011	0.1168 0.1169	120.1149 103.0169
0.95	0.9497	0.05	0.0501	0.0002 0.0001	0.4000	0.0012 0.0014	0.2320 0.2324	194.7648 171.7727
0.95	0.9499	0.1	0.0999	0.0002 0.0002	0.4001	0.0016 0.0017	0.3604 0.3606	224.7503 209.1361
0.9	0.9002	0.01	0.0101	0.0001 0.0001	0.3996	0.0011 0.0012	0.1227 0.1226	113.0005 98.5821
0.9	0.9001	0.05	0.0502	0.0001 0.0001	0.4005	0.0013 0.0015	0.2436 0.2422	189.5389 162.8959
0.9	0.9002	0.1	0.0999	0.0002 0.0002	0.3992	0.0017 0.0019	0.3729 0.3731	220.4197 196.3539

Table 2. Theoretical (**bold**) and empirical values based on 10000 simulations with n = 500, p = 0.7, q = 0.0, $\pi_x = 0.4$, and $\pi_y = \frac{1}{12}$.

SIMULATION RESULTS: LOVIG MODEL

Α	Â	т	ĥ	MSE[<i>m̂</i>]	$\hat{\pi}_{X}$	$MSE[\hat{\pi}_{x}]$	PP	\mathbb{M}
1	1.0000	0.01	0.0100	0.0006 0.0006	0.3996	0.0016 0.0018	0.4395 0.4398	271.3308 249.8652
1	0.9993	0.05	0.0501	0.0007 0.0007	0.4003	0.0019 0.0021	0.4975 0.4978	257.3392 239.3552
1	0.9998	0.1	0.0996	0.0008 0.0008	0.4014	0.0025 0.0026	0.5670 0.5665	228.5641 216.0764
0.95	0.9500	0.01	0.0103	0.0006 0.0006	0.3995	0.0018 0.0019	0.4516 0.4525	253.8097 233.1124
0.95	0.9501	0.05	0.0499	0.0007 0.0007	0.3995	0.0021 0.0023	0.5111 0.5106	242.4145 222.4784
0.95	0.9499	0.1	0.1001	0.0008 0.0008	0.3997	0.0028 0.0029	0.5792 0.5791	208.7430 199.9674
0.9	0.8995	0.01	0.0102	0.0006 0.0006	0.3993	0.0020 0.0021	0.4645 0.4659	235.4783 216.8621
0.9	0.9002	0.05	0.0502	0.0007 0.0007	0.3996	0.0023 0.0025	0.5225 0.5241	223.8847 206.1068
0.9	0.8999	0.1	0.0996	0.0008 0.0008	0.4004	0.0030 0.0032	0.5923 0.5922	195.9438 184.3541

Table 3. Theoretical (**bold**) and empirical values based on 10000 simulations with n = 500, p = 0.7, q = 0.15, $\pi_x = 0.4$, and $\pi_y = \frac{1}{12}$.

SIMULATION RESULTS: WARNER MODEL

Α	Â	т	ĥ	MSE[<i>m̂</i>]	$\hat{\pi}_{X}$	$MSE[\hat{\pi}_{x}]$	PP	\mathbb{M}
1	1.0000	0.01	0.0104	0.0027 0.0026	0.3993	0.0032 0.0034	0.6596 0.6597	204.8066 195.7034
1	1.0003	0.05	0.0520	0.0028 0.0027	0.4001	0.0038 0.0040	0.6898 0.6897	179.6031 173.4890
1	1.0003	0.1	0.0995	0.0027 0.0028	0.3998	0.0048 0.0050	0.7270 0.7265	150.4105 145.2988
0.95	0.9500	0.01	0.0107	0.0026 0.0026	0.4012	0.0036 0.0037	0.6727 0.6711	186.7708 179.7029
0.95	0.9498	0.05	0.0510	0.0027 0.0027	0.4006	0.0042 0.0044	0.7016 0.7005	167.1141 159.0592
0.95	0.9503	0.1	0.1001	0.0028 0.0028	0.3996	0.0054 0.0055	0.7351 0.7366	135.4669 132.9618
0.9	0.9002	0.01	0.0099	0.0026 0.0026	0.3987	0.0040 0.0042	0.6817 0.6830	171.1752 164.3027
0.9	0.8998	0.05	0.0507	0.0027 0.0027	0.4006	0.0046 0.0049	0.7139 0.7117	153.5604 145.1756
0.9	0.8996	0.1	0.1000	0.0028 0.0028	0.3992	0.0060 0.0062	0.7456 0.7469	125.1110 121.0998

Table 4. Theoretical (**bold**) and empirical values based on 10000 simulations with n = 500, p = 0.7, q = 0.3, $\pi_x = 0.4$, and $\pi_y = \frac{1}{12}$.

Discussion of Simulation Results:

- Estimates provided by π̂_{xu} are severely biased, but π̂_x provides accurate estimates of π_x
- Estimators and m̂ are good estimators of m and A
- Error estimators MSE[m] and MSE[x] are good estimators of MSE[m] and MSE[x], respectively
 - The Warner model has the most measurement error, as estimated by the metric MSE[m̂]
 - The Greenberg model has the least $MSE[\hat{\pi}_x]$
- The Warner model offers the highest privacy protection PP and the Greenberg model offers the least
- \blacktriangleright The Lovig model offers the highest unified measure $\mathbb M$
 - (Lovig, et al. 2021) arrived at the same conclusions for efficiency, privacy, and unified measure when measurement error was not accounted for
 - However, the Lovig mixture model has more measurement error than the Greenberg model

Aathematics & Statistics

DISCUSSION OF MEASUREMENT ERROR

DISCUSSION OF MEASUREMENT ERROR

Recall the formula for and a few values of measurement error:

Table 5. Theoretical and estimated values of MSE of measurement error estimators. Estimates aggregated over 10000 trials, with n = 500, $\pi_x = 0.4$, p = 0.7, and $\pi_y = \frac{1}{12}$.

Model	р	q	т	în	MSE[<i>m̂</i>]	MSE[<i>m̂</i>]
Greenberg	0.7	0	0.01	0.0099	0.0001	0.0001
	0.7	0	0.05	0.0499	0.0001	0.0001
	0.7	0	0.1	0.1003	0.0002	0.0002
Lovig	0.7	0.15	0.01	0.0100	0.0006	0.0006
	0.7	0.15	0.05	0.0501	0.0007	0.0007
	0.7	0.15	0.1	0.0996	0.0008	0.0008
Warner	0.7	0.3	0.01	0.0104	0.0026	0.0027
	0.7	0.3	0.05	0.0520	0.0027	0.0028
	0.7	0.3	0.1	0.0995	0.0028	0.0027

$$\mathsf{MSE}[\hat{m}] = \frac{P_{y_0}(1 - P_{y_0})}{n(1 - 2q - 2\pi_y(1 - p - q))^2}$$

The effect that measurement error has on the model not only depends on the choice of q but also p.

DISCUSSION OF MEASUREMENT ERROR

Figure 1. Impact of varying *q* on MSE[\hat{m}] with n = 500 and $\pi_y = \frac{1}{12}$. Values of q = 0, 0.3 represent the Greenberg and Warner models, respectively. Values of $q \in (0, 0.3)$ represent the Lovig model.

 $MSE[\hat{m}] vs q$

Bottom Left: p = 0.4, Bottom Right: p = 0.3.

PROPOSED MEASURE OF PRIVACY

PROPOSED MEASURE OF PRIVACY: ODDS RATIO

Proposed Measure of Privacy: Odds Ratio

- We propose using the Odds Ratio as a measure of the predictability of participants' true responses from model responses.
- The O.R. quantifies the change in odds of the sensitive trait as the reported response changes from a 0 ("No") to a 1 ("Yes").
- To compute the Odds Ratio, we first compute a binary logistic regression model.
 - The odds ratio is calculated using the coefficients estimated from the model:

$$\log(\text{odds of 1}) = \beta_0 + \beta_1 X$$

• Odds Ratio $(X) = e^{\beta_1}$

Recall the traditional method of privacy *PP* states that the Greenberg model offers the least privacy and Warner offers the most.

PROPOSED MEASURE OF PRIVACY: ODDS RATIO

Table 6. Odds ratio values from estimated true and model responses. Estimates aggregated over 10000 trials, with n = 500, $\pi_x = 0.4$, p = 0.7, and $\pi_y = \frac{1}{12}$

p+q	Α	т	OR	q	p+q	A	т	OR
Greenberg Model					Model			
0.7 0.7 0.7 0.7	1.00 1.00 1.00 0.95	0.00 0.05 0.10 0.00	124.93 124.62 124.62 105.53	0.15 0.15 0.15 0.15	0.85 0.85 0.85 0.85	0.95 0.90 0.90 0.90	0.10 0.00 0.05 0.10	11.63 10.24 10.25 10.25
0.7	0.95	0.05	105.74	Warner Model				
0.7 0.7 0.7	0.90 0.90 0.90	0.00 0.05 0.10	89.93 90.05 90.05	0.3 0.3 0.3	1.00 1.00 1.00	1.00 1.00 1.00	0.00 0.05 0.10	5.60 5.60 5.60
Model				0.3	1.00	0.95	0.00	5.09 5.11
0.85 0.85 0.85 0.85 0.85 0.85	1.00 1.00 1.00 0.95 0.95	0.00 0.05 0.10 0.00 0.05	13.26 13.27 13.27 11.61 11.63	0.3 0.3 0.3 0.3	1.00 1.00 1.00 1.00 1.00	0.95 0.90 0.90 0.90 0.90	0.10 0.00 0.05 0.10	5.11 4.65 4.66 4.6
	p + q berg Mo 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.85 0.85 0.85 0.85	p + q A berg Model 0.7 1.00 0.7 1.00 0.7 0.7 0.95 0.7 0.7 0.95 0.7 0.7 0.95 0.7 0.7 0.90 0.7 0.7 0.90 0.7 0.7 0.90 0.7 0.7 0.90 0.7 0.7 0.90 0.7 0.85 1.00 0.85 0.85 1.00 0.85 0.85 0.95 0.85	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

GREENSBORO Department of Mathematics & Statistics

FUTURE WORK

- Applying different types of measurement error to the mixture model to account for unequal probability of error occurrence
- Measurement error in Optional Mixture Model by Sapra et al. (2022)

- WARNER, S. L., Randomized response: A survey technique for eliminating evasive answer bias., Journal of the American Statistical Association, 60(309):63-69. 1965
- GREENBERG, B. G., ABUL-ELA, A.-L. A., SIMMONS, W. R., AND HORVITZ, D. G., *The unrelated question randomized response model: Theoretical framework.*, Journal of the American Statistical Association, 64(326):520-539. 1969.
- GUPTA S., MEHTA S., SHABBIR J. AND KHALIL S., A unified measure of respondent privacy and model efficiency in quantitative RRT models, Journal of Statistical Theory and Practice, 12:3, 506-511. 2018.
- LOVIG M., KHALIL S., RAHMAN S., SAPRA P. AND GUPTA S., A mixture binary RRT model with a unified measure of privacy and efficiency, Communications in Statistics - Simulation and Computation, DOI: 10.1080/03610918.2021.1914092. 2021.
- SAPRA, P., KHALIL, S. AND GUPTA, S. (2022): Accounting for Lack of Trust in Optional Binary RRT Models Using a Unified Measure of Privacy and Efficiency, Journal of Statistical Theory and Practice, Vol. 16, Article 51

Thank you! Any questions?

