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Main Features of HPS
▶ Initial configuration: Poisson point process (PPP) of intensity

λ on R.
▶ Dynamics: whenever a Poisson mark appears, the closest

particle to its right jumps to its location.
▶ Stationarity: at any fixed time, the configuration of particles

is again a PPP of intensity λ.
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f1, f2 monotone functions on B1 and B2.

d = d(B1, B2) > Cϵ−1(per(B1) + per(B2)
)
,

▶ If f1, f2 non-increasing, then ∀ρ > ρ′ s.t ρ − ρ′ = ϵ

Eρ[f1f2] ≤ Eρ′ [f1]Eρ′ [f2] + 10e−cI ϵ
4d

▶ If f1, f2 non-decreasing, then ∀ρ′ > ρ s.t ρ′ − ρ = ϵ

Eρ[f1f2] ≤ Eρ′ [f1]Eρ′ [f2] + 10e−cI ϵ
4d



Detection Problem

▶ Scenario: a target moves in the dynamic environment formed
by HPS detectors.

▶ Target also jumps only at integer times and occupies integer
positions within a fixed range.

▶ Objective: can the target avoid detection over time?

Result:

▶ A target starting at the origin, can avoid detectors indefinitely,
with positive probability.
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Theorem 2 (L. Pimentel, V.)
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If
pk ≤ l−4

k for some k ≥ k̃ ,

then
pn ≤ l−4

n for all n ≥ k .

In particular,
Pρ [there exists an infinite open path] = 1 .
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1. #⌜= 10l
1/2
k−1

;

2. If Dk happens, there exists two ⌜ and ⌜′ (one
in each group) such that Dk−1(⌜) and

Dk−1(⌜
′) happen and

d
(
⌜, ⌜′

)
≥

(
per(⌜) + per(⌜′)

)3/2−υ

=⇒ pk ≤ (#⌜)2
(
p2k−1 + 10e−cI ϵ

4d
)

=⇒ pn+1 l
4
n+1 < 1.
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Trigger inequality

J(x ,n) = {target is not allowed to occupy (x , n)}

Pλk

[
J̃(x ,n)

]
= 1− e−2rλk e−2r = 1− e−2r(λk+1) ≤ 1− e−2r(λ0+1) ,

=⇒ pk ≤ (Lk + 1)
(
1− e−2r(λ0+1)

)⌊lk/2r⌋



Random Walk in HPS

Define the random walk (Xn)n≥0 on Z starting at X0 = 0 and
evolving on the top of η as follows:

▶ If ηn(IXn) > 0 then{
Xn+1 = Xn + 1 with probability p•

Xn+1 = Xn − 1 with probability 1− p•
;

▶ If ηn(IXn) = 0 then{
Xn+1 = Xn + 1 with probability p◦

Xn+1 = Xn − 1 with probability 1− p◦
.



Random Walk in HPS

Define the random walk (Xn)n≥0 on Z starting at X0 = 0 and
evolving on the top of η as follows:

▶ If ηn(IXn) > 0 then{
Xn+1 = Xn + 1 with probability p•

Xn+1 = Xn − 1 with probability 1− p•
;

▶ If ηn(IXn) = 0 then{
Xn+1 = Xn + 1 with probability p◦

Xn+1 = Xn − 1 with probability 1− p◦
.

Ix = (x − 1
2 , x + 1

2)
0 ≤ p◦, p• ≤ 1



Questions About the Model

▶ Law of Large Numbers (LLN): Does the walker have a
deterministic linear speed?

▶ Central Limit Theorem (CLT): Does the walker satisfy
Gaussian fluctuations around the mean behavior?

▶ Scaling Limits: How do fluctuations behave at different spatial
and temporal scales?



Graphical construction

Consider the coupled family {(Xw
t )t≥0, w ∈ L} where

L = {(x , n) ∈ Z2 : x , n even or x , n odd},

constructed as Xw
0 = w and the position after one step is

Xw
1 =

{
x + 2 1{Uw≤p•} − 1, if ηλn (Ix) > 0,

x + 2 1{Uw≤p◦} − 1, if ηλn (Ix) = 0,
(3.3)

where {Uw : w ∈ L} is an i.i.d. collection of uniform random
variables in [0, 1] and ηλn (Ix) denotes the number of particles in the
interval (x − 1/2, x + 1/2) at time n in the environment with
density λ.
For any integer m ≥ 1, Xw

m is defined by induction.
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Graphical construction

This family satisfies three fundamental properties:

▶ Coalescence: if two random walks meet at some vertex, they
will follow the same trajectory from that point onward;

▶ Monotonicity in Space: If one random walk starts to the
right of another, it remains to the right for all future times.

▶ Monotonicity in Density: If two random walks start at the
same position and evolve in environments with densities
λ < λ′, then, provided p• > p◦, the walk in the denser
environment (λ′) remains to the right of the one in the
sparser environment (λ) at all times.



Consider the following event

AH(v , λ) :=
{
∃ x ∈ [0,H] s.t. X

(x ,0),λ
H − x ≥ vH

}
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Consider the following event

AH(v , λ) :=
{
∃ x ∈ [0,H] s.t. X

(x ,0),λ
H − x ≥ vH

}
pH(v , ρ) := P (AH(v , λ))

v+(ρ) := inf

{
v ∈ R : lim inf

H→∞
pH(v , ρ) = 0

}
,



Consider the following event

ÃH(v , λ) :=
{
∃ x ∈ [0,H] s.t. X

(x ,0),λ
H − x ≤ vH

}
p̃H(v , ρ) := P

(
ÃH(v , λ)

)
v−(ρ) := sup

{
v ∈ R : lim inf

H→∞
p̃H(v , ρ) = 0

}
,



Properties of v±(ρ) (If p◦ < p•)
▶ ρ 7→ v±(ρ) is non-increasing.
▶ limρ→0 v±(ρ) = 2p• − 1.
▶ limρ→∞ v±(ρ) = 2p◦ − 1



Properties of v±(ρ) (If p◦ < p•)



Theorem 3 (L. Pimentel, V.)

ρc+ := inf{ρ > 0 : v+(ρ) < ρ} ∈ (0,∞) .

ρc− := inf{ρ > 0 : v−(ρ) < ρ} ∈ (0,∞) .

Assume that p◦ < p•. For any ρ < ρc− we have that v−(ρ) > ρ
and there exist c̃1 ∈ (0,∞) and ṽ > ρ such that

p̃H(ṽ , ρ) ≤ c̃1 exp
(
−2 log3/2H

)
, ∀H ≥ 1 .

For any ρ > ρc+ we have that v+(ρ) < ρ and there exist
c1 ∈ (0,∞) and v < ρ such that

pH(v , ρ) ≤ c1 exp
(
−2 log3/2H

)
, ∀H ≥ 1 .



Sketch of the Ballisticity Proof (based on [2])

Define a smart sequence of scales Lk , speeds vk and densities ρk ...
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