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Main Features of HPS
» Initial configuration: Poisson point process (PPP) of intensity
Aon R.
» Dynamics: whenever a Poisson mark appears, the closest
particle to its right jumps to its location.
» Stationarity: at any fixed time, the configuration of particles
is again a PPP of intensity .
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Theorem 1 (Sprinkled Decoupling Inequality)
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Theorem 1 (L. Pimentel, V.)
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Theorem 1 (L. Pimentel, V.)
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Detection Problem

» Scenario: a target moves in the dynamic environment formed
by HPS detectors.

P Target also jumps only at integer times and occupies integer
positions within a fixed range.

» Objective: can the target avoid detection over time?

Result:

> A target starting at the origin, can avoid detectors indefinitely,
with positive probability.



Detection Problem
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Detection Problem
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Theorem 2 (L. Pimentel, V.)
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Theorem 2 (L. Pimentel, V.)

301
=10 joy = [}/%) 1 and Ly = KE + ;) IkJ .

Ly Dy := {there exists no open crossing Ay } .

Pk =PPK[Dy] .

-
Pk+1 — Pk = Cply

If
P < /‘:4forsomek >k,
then
pn < 7% foralln > k.
In particular,

P? [there exists an infinite open path] = 1.



Sketch of the proof (based on [1])




Sketch of the proof (based on [1])




Sketch of the proof (based on [1])

— 10/1/2 .
1Logr=10,7%;

2. If Dy happens, there exists two ™ and g (one
in each group) such that Dy (") and

Dy _1("") happen and

3/2—v

d(77") = (per(r) + per(™))




Sketch of the proof (based on [1])

_ 10/1/2.
1L o#r=10,"%;
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in each group) such that Dy (") and
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Trigger inequality
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Trigger inequality

Jix,n) = {target is not allowed to occupy (x, n)}

P [](X’n)} 11— e M2 =] e 2rut]) < g 2r(hot)

Ik /2r
= pr < (L +1) <1 — e—2f(/\o+1)> Lhe/2r]



Random Walk in HPS

Define the random walk (Xj)s>0 on Z starting at Xo = 0 and
evolving on the top of i as follows:

> If ny(/x,) > 0 then
Xn+1 = Xp + 1 with probability p,
Xnt1 = Xp — 1 with probability 1 — p,

» If nn(lx,) = 0 then
Xn+1 = Xn + 1 with probability p
Xn+1 = Xp — 1 with probability 1 — p,



Random Walk in HPS

Define the random walk (X,),>0 on Z starting at Xp = 0 and
evolving on the top of n as follows:

> If ny(/x,) > 0 then
Xn+1 = Xp + 1 with probability p,
Xn+1 = X — 1 with probability 1 — p,

» If ny(/x,) = 0 then
Xn+1 = Xp + 1 with probability p,
Xn+1 = Xp — 1 with probability 1 — p,
L= (x— %,x—i—%)
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Questions About the Model

» Law of Large Numbers (LLN): Does the walker have a
deterministic linear speed?

» Central Limit Theorem (CLT): Does the walker satisfy
Gaussian fluctuations around the mean behavior?

» Scaling Limits: How do fluctuations behave at different spatial
and temporal scales?



Graphical construction

Consider the coupled family {(X{)¢>0, w € L} where
L = {(x,n) € Z*: x, n even or x, n odd},

constructed as X3 = w and the position after one step is

o {x+21{uwgp,}—1, if n)(l) >0, (33)

x+21gy,<py — 1, if n(l) =0,

where {U,, : w € L} is an i.i.d. collection of uniform random
variables in [0, 1] and n))(/x) denotes the number of particles in the
interval (x —1/2,x + 1/2) at time n in the environment with
density A.

For any integer m > 1, XV is defined by induction.



Graphical construction
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Graphical construction

This family satisfies three fundamental properties:

>

>

Coalescence: if two random walks meet at some vertex, they
will follow the same trajectory from that point onward;

Monotonicity in Space: If one random walk starts to the
right of another, it remains to the right for all future times.

Monotonicity in Density: If two random walks start at the
same position and evolve in environments with densities

A < X, then, provided pe > po, the walk in the denser
environment (') remains to the right of the one in the
sparser environment () at all times.



Consider the following event

An(v,)) = {Eix e [0,H] s.t. XG0 _ x> vH}
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Consider the following event
L (x,0),A
An(v, ) = {ax € [0,H] st. XU _ x> VH}

pr(v,p) =P (Au(v,)\))

(0, H) _




Consider the following event
An(v,A) == {EIX € [0, H] s.t. X,(_,X’O)’)‘ — x> VH}
PH(V, p) =P (AH(V7 A))

vi(p) :=inf {v € R : liminf py(v,p) = 0} ,
H—o0

(0. H)




Consider the following event

An(v,A) = {Elx € [0, H] s.t. Xﬁ,x’o)’)‘ —x < vH}
Bri(v.p) = P (Au(v.3))

v—(p) = sup {v ER : liminf (v, p) = 0} 7
H—oo



Properties of vi(p) (If po < p)

» p+— vi(p) is non-increasing.

> |impﬁg Vi(p) = 2p. —1.
> limp—)oo Vi(P) =2p,—1

Vo (p)

2pe — 1

2ps— 1 4.




Properties of vi(p) (If po < p)
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Theorem 3 (L. Pimentel, V.)

pet =inf{p >0 : vi(p) < p} € (0,00).
pe— :=inf{p >0 : v_(p) < p} € (0,00).

Assume that p, < ps. For any p < p._ we have that v_(p) > p
and there exist & € (0,00) and ¥ > p such that

Bri(7.p) < Erexp (—210g¥2 H) | WH > 1.

For any p > pc4 we have that v (p) < p and there exist
c1 € (0,00) and v < p such that

pr(v.p) < crexp (—2log¥? H) | VH > 1.



Sketch of the Ballisticity Proof (based on [2])

Define a smart sequence of scales Ly, speeds v and densities py...
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Define a smart sequence of scales Ly, speeds vx and densities py...
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Sketch of the Ballisticity Proof (based on [2])
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