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Hammersley’s Particle System (HPS)

I Particles are initially distributed as a homogeneous Poisson
point process (PPP) on R with rate λ > 0.

I A particle at z ∈ R jumps to the left at rate given by the
distance to its nearest particle to the left, say z∗, and the new
location is chosen uniformly between z and z∗.

I A ⊆ R 7→ ηλt (A) = “number of particles within A at time t”.

I Particles remains distributed as a PPP with the same rate
(stationary regime).



Hammersley’s Particle System (HPS)
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Figure: Particles are represented by bullets (•). Time goes up and
trajectories according to Hammersley’s process are represented as broken
lines attached to each particle.



Motivation

Two models on the top of HPS

I Detection.

I Random Walk in Dynamic Random Environment (RWDRE).

I More details in Roberto’s talk (28/4).



Detection

I Suppose particles are detectors that are capable of detecting
all targets within some distance r > 0 from their location.

I A target can jump up to a certain range N ≥ 1 only at discrete
times, and can predict the future movement of all detectors.

I Question: a target starting at the origin can avoid detection
forever with positive probability?



Detection
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Figure: Line segments centered at • represent detectors. A target
starting at the origin is represented by F. A possible escape route up to
time t (with N ≥ 3) is drawn with arrows.



RWDRE

I Let Ix = (x − 1/2, x + 1/2).

I If ηλn (IXn) > 0 then

{
Xn+1 = Xn + 1 with probab. p•

Xn+1 = Xn − 1 with probab. 1− p•
.

I If ηλn (IXn) = 0 then

{
Xn+1 = Xn + 1 with probab. p◦

Xn+1 = Xn − 1 with probab. 1− p◦
.

I Questions: LLN, CLT.



Space-Time Correlations

I Detection is essentially a percolation problem on the
space-time environment generated by HPS.

I Random walk increments correlate through the space-time
correlations of HPS.

I HPS exhibits strong correlations along characteristic lines.



Sprinkled Decoupling (Today’s Talk)

I If f1 and f2 are increasing functions of η then

E λ [f1]E λ [f2] ≤ E λ [f1f2] .

I If the supports of f1 and f2 are far apart and λ < λ′ then

E λ [f1f2] ≤ E λ′ [f1]E λ′ [f2] + small error .

I Control of distance and error depends on λ′ − λ.



Sprinkled Decoupling

Play a key role in multiscale renormalization schemes for strongly
correlated systems:

I Sidoravicius and Sznitman. Percolation for the vacant set of
random interlacements. Comm. Pure Appl. Math. (2009).

I Sznitman. Vacant set of random interlacements and percolation.
Ann. Math. (2010).



Sprinkled Decoupling

More recently, in the context of particle systems:

I Hilário, den Hollander, Sidoravicius, dos Santos and Teixeira.
Random walk on random walks. Electron. J. Probab. (2015).

I Baldasso and Texeira. How can a clairvoyant particle escape the
exclusion process? Ann. IHP Probab. Statist. (2018).

I Hilário, Kious and Texeira. Random walk on the simple symmetric
exclusion process. Commun. Math. Phys. (2020).



Back to HPS: Hydrodynamic Limit

Aldous and Diaconis heuristics:

I w(x , t) = spatial process around x at time t.

I ∂tw(x , t) = d(x , t), where d(x , t) = distance from x to x∗.

I w(x , t) approximates PPP with rate u(x , t) = ∂xw(x , t).

I ∂tw(x , t) = d(x , t) = 1
u(x ,t) = 1

∂xw(x ,t) .

I Burges’ equation: ∂tu + ∂x f (u) = 0, where f (u) = − 1
u .



Slow Mixing Along Characteristics

I Method of characteristics:

u(x0 + tf ′(u(x0)), t) = u(x0) .

A disturbance made in the initial data travels along
characteristic lines. In our case f ′(u) = 1

u2 .

I Stationary regime u(x) = λ =⇒ f ′(u(x)) = 1
λ2 .

I HPS exhibits slow mixing along characteristic lines:

Covλ
[
η0(x)ηt(x + t/λ2)

]
∼ t−2/3 (KPZ scaling) .



Sprinkled Decoupling Inequality for HPS

I M locally finite counting measure on R.

I η : [0,∞)→M cadlag trajectory.

I η ≤ η̄ if ∀ t ≥ 0 ∀ A ⊆ R we have that ηt(A) ≤ η̄t(A).

I f1(η), f2(η) ∈ [0, 1] for all η, support within space-time boxes
B1 and B2, respectively.

I Sprinkling parameter ε =
∣∣λ−2 − λ′−2

∣∣.
I ci uniform for all λ, λ′ ∈ K , K ⊆ (0,∞) compact.



Sprinkled Decoupling Inequality for HPS

Theorem [P. and Viveros]

There exist c1, c2 > 0 such that for all

d
def
= d(B1,B2) > c1ε

−1
(
per(B1) + per(B2)

)
,

if λ < λ′ and fi increasing then

E λ [f1f2] ≤ E λ [f1]E λ′ [f2] + 10e−c2ε
4d ,

if λ′ < λ and fi decreasing then

E λ [f1f2] ≤ E λ [f1]E λ′ [f2] + 10e−c2ε
4d .



Proof: Lateral Decoupling + Domination

Write d = d(B1,B2) = dh + dv .

Lemma - Lateral Decoupling

There exist c3, c4 > 0 such that if

dh ≥ c3

(
dv + per(B1) + per(B2)

)
,

then ∣∣∣E λ [f1f2]− E λ [f1]E λ [f2]
∣∣∣ ≤ 4e−c4dh ≤ 4e

− c4

1+c−1
3

d
.



Proof: Lateral Decoupling + Domination

Lemma - Domination

Consider the basic coupling (ηλ, ηλ
′
), with ηλ0 independent of ηλ

′
0 .

There exists c5 > 0 such that

P
[
∀ u ∈ [t, t + s] , ∀A ⊆ (a, b] , ηλu (A) ≤ ηλ′u (A)

]
≥ 1− 10e−c5ε

4t ,

for all t > 4ε−1
(
b − a + sλ−2

)
.



HPS and Last-Passage-Percolation
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Figure: In this picture, Lλt (x) = 3, Lλt (0) = 1 and ηλt ((0, x ]) = 2. A
maximal increasing path through �-Poisson (clocks) from (0, 0) to (x , t)
is drawn with dotted broken lines.



HPS and Last-Passage-Percolation

Define

L ((z , s), (x , s + t)) = maximal increasing �-Poisson path .

and

Mλ(z) =

{
ηλ0 ((0, z ]) for z > 0
−ηλ0 ((z , 0]) for z ≤ 0 .

The flux of particles Lλt (x) can be written as

Lλt (x) = sup
{
Mλ

0 (z) + L((z , 0), (x , t)) : z ∈ (−∞, x ]
}
,

and
ηλt ((a, b]) = Lλt (b)− Lλt (a) .



Proof of Domination

Lemma - Domination via Exit-Points

Let

Zλt (x) = sup
{
z ∈ (−∞, x ] : Lλt (x) = Mλ(z) + L((z , 0), (x , t))

}
.

If Zλt (b) ≤ Zλ
′

t (a) then

Lλt (y)− Lλt (x) ≤ Lλ
′

t (y)− Lλ
′

t (x) ,

for all x , y ∈ [a, b] with x < y .



Proof of Domination

Lemma - Symmetries

Zλt (x + h)
dist
= Zt(x) + h and Zλt (x)

dist
= λZ 1

t/λ(λx) .

Lemma - Large Deviations

There exists an universal constant c0 > 0 such that

max
{
P
[
Z 1
t (t) > εt

]
, P
[
Z 1
t (t) < −εt

]}
≤ 5e−c0ε

4t ,

for all t > 0.

Remark

Exit-points follow characteristic lines backward in time.



Proof of Domination

By monotonicity and Domination via Exit Points, it suffices to
prove that

P
[
Zλt (b) ≤ Zλ

′
t+s(a)

]
≥ 1− 10e−c5ε

4t ,

for all t > 4ε−1
(
b − a + sλ−2

)
, which follows by combining

Symmetries together with Large Deviations.



Final Remarks

I The key contribution is Domination.

I The same method (via exit points) can be use to prove
sprinkled decoupling for stationary exponential last-passage
percolation (SELPP).

I Is it possible to relate sprinkled decoupling for SELPP with
sprinkled decoupling for TASEP?


